The σ-convergence and σ-core of double sequences
نویسندگان
چکیده
The σ -convergence and σ -core of a real bounded sequence were introduced in [R. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963) 81–94] and [S.L. Mishra, B. Satapathy, N. Rath, Invariant means and σ -core, J. Indian Math. Soc. 60 (1984) 151–158], respectively. In this work, we extend these ideas to double sequences. c © 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
The Cesáro Core of Double Sequences
and Applied Analysis 3 where σ s σ σj−1 s . In this case, we write σ − limx . By V 2 σ , we denote the set of all σ-convergent and bounded double sequences. One can see that in contrast to the case for single sequences, a convergent double sequence need not be σ-convergent. But every bounded convergent double sequence is σ-convergent. So, c∞ 2 ⊂ V 2 σ ⊂ ∞ 2 . In the case σ i i 1, σ-convergence ...
متن کاملA -double Sequence Spaces via Orlicz Functions and Double Statistical Convergence
Abstract – The aim of this paper is to introduce and study a new concept of strong double Δ ) A ( σ convergence sequences with respect to an Orlicz function, and some properties of the resulting sequence spaces were also examined. In addition, we define the Δ ) A ( σ -statistical convergence and establish some connections between the spaces of strong double Δ ) A ( σ -convergence sequences and ...
متن کامل$mathcal{I}_2$-convergence of double sequences of\ fuzzy numbers
In this paper, we introduce and study the concepts of $mathcal{I}_2$-convergence, $mathcal{I}_2^{*}$-convergence for double sequences of fuzzy real numbers, where $mathcal{I}_2$ denotes the ideal of subsets of $mathbb N times mathbb N$. Also, we study some properties and relations of them.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 19 شماره
صفحات -
تاریخ انتشار 2006